Como ya se ha comentado, las técnicas de la minería de datos provienen de la Inteligencia artificial y de la estadística, dichas técnicas, no son más que algoritmos, más o menos sofisticados que se aplican sobre un conjunto de datos para obtener unos resultados.
Las técnicas más representativas son:
- Redes neuronales.- Son un paradigma de aprendizaje y procesamiento automático inspirado en la forma en que funciona el sistema nervioso de los animales. Se trata de un sistema de interconexión de neuronas en una redque colabora para producir un estímulo de salida. Algunos ejemplos de red neuronal son:
- El Perceptrón.
- El Perceptrón multicapa.
- Los Mapas Autoorganizados, también conocidos como redes de Kohonen.
- Regresión lineal.- Es la más utilizada para formar relaciones entre datos. Rápida y eficaz pero insuficiente en espacios multidimensionales donde puedan relacionarse más de 2 variables.
- Árboles de decisión.- Un árbol de decisión es un modelo de predicción utilizado en el ámbito de la inteligencia artificial, dada una base de datos se construyen estos diagramas de construcciones lógicas, muy similares a los sistemas de predicción basados en reglas, que sirven para representar y categorizar una serie de condiciones que suceden de forma sucesiva, para la resolución de un problema. Ejemplos:
- Algoritmo ID3.
- Algoritmo C4.5.
- Modelos estadísticos.- Es una expresión simbólica en forma de igualdad o ecuación que se emplea en todos los diseños experimentales y en la regresión para indicar los diferentes factores que modifican la variable de respuesta.
- Agrupamiento o Clustering.- Es un procedimiento de agrupación de una serie de vectores según criterios habitualmente de distancia; se tratará de disponer los vectores de entrada de forma que estén más cercanos aquellos que tengan características comunes. Ejemplos:
- Algoritmo K-means.
- Algoritmo K-medoids.
- Reglas de asociación.- Se utilizan para descubrir hechos que ocurren en común dentro de un determinado conjunto de datos.
Según el objetivo del análisis de los datos, los algoritmos utilizados se clasifican en supervisados y no supervisados (Weiss y Indurkhya, 1998):
- Algoritmos supervisados (o predictivos): predicen un dato (o un conjunto de ellos) desconocido a priori, a partir de otros conocidos.
- Algoritmos no supervisados (o del descubrimiento del conocimiento): se descubren patrones y tendencias en los datos.
fuente.wikipedia